您好,欢迎访问江西省农业科学院 机构知识库!
筛选
科研产出
排序方式:

时间

  • 时间
  • 相关度
  • 被引量
资源类型: 中文期刊
作者:李艳大(精确检索)
作者:叶春(精确检索)
作者:曹中盛(精确检索)
作者:孙滨峰(精确检索)
作者:舒时富(精确检索)
作者:黄俊宝(精确检索)
作者:田永超(精确检索)
作者:何勇(精确检索)
1条记录
基于作物生长监测诊断仪的双季稻叶片氮含量和氮积累量监测

应用生态学报 2020 北大核心 CSCD

摘要:为了验证作物生长监测诊断仪(CGMD)监测双季稻氮素营养指标的准确性和适用性,构建基于CGMD的双季稻叶片氮含量(LNC)和氮积累量(LNA)的监测模型.选用8个不同早、晚稻品种,设置4个不同施氮水平,利用CGMD采集冠层差值植被指数(DVI)、归一化植被指数(NDVI)和比值植被指数(RVI),同步利用ASD FH2高光谱仪采集冠层光谱反射率,并计算DVI、NDVI和RVI;通过比较CGMD和ASD FH2采集的冠层植被指数变化特征,验证CGMD的测量精度,构建基于CGMD的LNC和LNA监测模型,并利用独立试验数据对模型进行检验.结果 表明:早、晚稻LNC、LNA、DVI、NDVI和RVI随施氮水平的增加而增大,随生育进程的推进呈先升后降的趋势;CGMD与ASD FH2采集的DVI、NDVI和RVI间拟合的决定系数(R2)分别为0.9350、0.9436和0.9433,表明CGMD的测量精度较高,可替代ASD FH2采集冠层植被指数.基于CGMD的3个冠层植被指数相比,NDVICGMD与LNC的相关性最高,RVICGMD与LNA的相关性最高;基于NDVICGMD的指数模型可较准确地预测LNC,模型R2为0.8581~0.9318,模型检验的均方根误差(RMSE)、相对均方根误差(RRMSE)和相关系数(r)分别为0.1%~0.2%、4.0% ~ 8.5%和0.9041~0.9854;基于RVICGMD的幂函数模型可较准确地预测LNA,模型R2为0.8684~0.9577,模型检验的RMSE、RRMSE和r分别为0.37~0.89 g·m-2、6.7% ~ 20.4%和0.9191~0.9851.与化学分析方法相比,利用CGMD可便捷准确地获取早、晚稻的LNC和LNA,在双季稻丰产高效栽培和氮肥精确管理中具有应用价值.

关键词: 作物生长监测诊断仪 双季稻 叶片氮含量 叶片氮积累量 监测模型

 全文链接 请求原文

首页上一页1下一页尾页