科研产出
基于高光谱成像和Att-BiGRU-RNN的柑橘病叶分类
《农业机械学报 》 2023 EI 北大核心 CSCD
摘要:为实现对柑橘叶片病虫药害种类的快速精准识别,针对多种类柑橘病叶设计一种融合注意力机制(Attention mechanism)的双向门控循环单元-循环神经网络(Attention-bidirectional gate recurrent unit-recurrent nural network,Att-BiGRU-RNN)分类模型.该模型在编解码模块分别采用BiGRU和RNN结构,能够利用高光谱数据前后波段光谱信息的关联性,有效提取光谱信息的深层特征;根据不同波段光谱信息的差异性引入注意力机制动态分配权重信息,提高重要光谱特征对分类模型的贡献率,提升模型的分类准确率.获取6类柑橘叶片高光谱信息,构建实验样本集,利用Att-BiGRU-RNN、VGG16、SVM和XGBoost分别建立柑橘病叶分类模型,Att-BiGRU-RNN模型总体分类准确率(Overall accuracy,OA)平均可达98.21%,相较于其他3种模型分别提高4.71、10.95、3.89个百分点,对光谱曲线重合度高的除草剂危害和煤烟病叶片的分类准确率有显著提升.实验结果表明,深度学习方法可有效利用高光谱不同波段间的关联信息,识别准确率较机器学习方法有大幅提高,为柑橘病虫药害快速无损检测和防治提供了一种新方法.
关键词: 柑橘病叶 高光谱成像 深度学习 注意力机制 特征提取
基于非接触式的牛只身份识别研究进展与展望
《中国农业科技导报 》 2020 北大核心 CSCD
摘要:快速精准确定牛个体身份对疾病防控、品种遗传改良、奶制品和肉制品质量溯源以及改善农业假保险索赔等方面具有重要意义.传统的牛个体识别使用诸如烙印、耳纹、耳标和无线射频识别等方法,易遭受设备损失/工作重复、标记欺诈、动物福利安全以及监测成本和距离等方面的挑战;而基于生物特征的非接触识别由于其独特性、不变性、低成本易操作以及动物福利高,成为牛身份识别的新趋势.主要介绍了几种基于非接触式的牛身份识别的研究进展,重点关注牛脸识别的最新成果,讨论当前牛脸识别在实际应用中面临的挑战,在此基础上对深度学习在牛脸身份识别研究中的应用进行了设计构思与展望.
基于深度学习的作物病虫害可视化知识图谱构建
《农业工程学报 》 2020 EI 北大核心 CSCD
摘要:针对作物病虫害领域存在实体关系交叉关联、多源异构数据聚合能力差、知识共享困难等问题,利用知识图谱以结构化的形式描述实体间复杂关系的优势,该研究提出了一种基于深度学习的作物病虫害知识图谱构建方法.该方法在领域本体的基础上,以一种与领域语料相适应的新标注模式实现实体和关系的联合抽取.将实体和关系抽取任务转化为序列标注问题,对实体和关系进行同步标注,有效提高标注效率;为了解决重叠关系抽取问题,直接对三元组建模而不是分别对实体和关系建模,通过标签匹配和映射即可获得三元组数据.利用来自转换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers,BERT)-双向长短期记忆网络(Bi-directional Long-Short Term Memory,BiLSTM)+条件随机场(Conditional Random Field,CRF)端到端模型进行试验,结果表明效果优于基于普通标注方式的流水线方法和联合学习方法中的卷积神经网络(Convolutional Neural Networks,CNN)+BiLSTM+CRF、BiLSTM+CRF等经典模型,F1得分为91.34%.最后,将抽取到的知识存储到Neo4j图数据库中,直观地反映知识图谱的内部结构,实现知识可视化和知识推理.该研究构建的知识图谱可为作物病虫害智能问答系统、推荐系统、智能搜索等下游应用提供高质量的知识库基础.
关键词: 作物 病虫害 模型 知识图谱 深度学习 实体关系联合抽取
首页上一页1下一页尾页