科研产出
螺旋藻培养液高效循环利用及其生长抑制因子的鉴定
《过程工程学报 》 2024 北大核心 CSCD
摘要:针对螺旋藻培养耗水量大、成本较高、营养元素浪费严重且其培养液循环利用过程中生长受到严重抑制等问题。本工作采用0.45μm滤膜、10 kDa超滤膜、大孔树脂S-8和活性炭处理螺旋藻培养液,评估处理后的培养液循环利用5次后,螺旋藻的生长及营养成分含量变化,并分析鉴定胞外抑制的组成成分。结果表明,螺旋藻培养液的处理可有效降低胞外有机物的抑制效果,其处理效果顺序为10 kDa超滤膜>大孔树脂S-8>活性炭>0.45μm滤膜。培养液循环利用5次后,10 kDa超滤膜处理组的螺旋藻细胞干重仅下降5.9%,而0.45μm滤膜处理组的细胞干重显著降低22%(p<0.05),且由于细胞代谢的胁迫作用,其胞内多糖含量却增加了217%。此外,培养液中的胞外抑制物主要是由岩藻糖(19.98%)、鼠李糖(15.61%)和葡萄糖(14.75%)等单糖组成的多糖类有机物。
壳聚糖-果胶凝胶珠吸附剂的改性及其去除藻蓝蛋白中Pb(Ⅱ)的应用
《食品工业科技 》 2023 北大核心 CSCD
摘要:壳聚糖-果胶凝胶珠(Chitosan-pectin gel beads,CPB)吸附去除食品中重金属具有较高的潜力,为提高其稳定性、再生利用性及吸附能力,本文采用明胶(Gel)和羧甲基纤维素钠(CMC)对CPB进行改性,利用扫描电镜(SEM)、比表面积与孔隙度分析(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TG)、Zeta电位仪、X射线光电子能谱(XPS)及等技术表征其结构特性,优化吸附解析条件,并评估其对藻蓝蛋白中Pb(Ⅱ)的实际去除效果.结果显示,与CPB和Gel-CPB相比,CMC改性的CPB(CMC-CPB)热稳定性高、表面粗糙多孔、比表面积大(20.28±1.35 m2/g)及Zeta电位低,对金属离子吸附能力强,且解析再生利用率高.FTIR图谱分析显示改性前后CPB官能团结构未发生明显变化,其主要结构官能团为羧基、羟基和氨基.TG分析表明改性前后的CMC-CPB的热稳定性显著高于CPB和Gel-CPB(P<0.05).XPS光谱分析表明三种吸附剂成功吸附了Pb(Ⅱ),其中CMC-CPB对Pb(Ⅱ)的吸收峰最强.三种吸附剂(CPB、Gel-CPB和CMC-CPB)去除Pb(Ⅱ)的最佳 pH和温度分别为 6.0和 60℃,对 Pb(Ⅱ)的吸附过程均符合 Langmuir吸附等温模型(R2=0.9543~0.9811)和准二级动力学模型(R2=0.9963~0.9991),该吸附属于单分子层化学吸附,即-COO、-OH、-CO-NH与Pb(Ⅱ)之间的络合作用.根据Langmuir模型曲线评估,CMC-CPB对Pb(Ⅱ)的最大吸附容量qmax为69.37 mg/g,显著高于Gel-CPB和CPB(P<0.05).综合在藻蓝蛋白中的应用效果,CMC-CPB低成本高效安全地去除藻类和藻蓝蛋白食品中Pb(Ⅱ)具有更广阔的前景.
关键词: 壳聚糖-果胶凝胶珠 改性 吸附 藻蓝蛋白 Pb(Ⅱ)
首页上一页1下一页尾页