Long-term fertilization and intensive cropping enhance carbon and nitrogen accumulated in soil clay-sized particles of red soil in South China
文献类型: 外文期刊
作者: Xu, Hu 1 ; Liu, Kailou 3 ; Zhang, Wenju 1 ; Rui, Yichao 4 ; Zhang, Jingye 1 ; Wu, Lei 1 ; Colinet, Gilles 2 ; Huang, Qing 1 ;
作者机构: 1.Chinese Acad Agr Sci, Natl Engn Lab Improving Qual Arable Land, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
2.Univ Liege, Gembloux Agrobio Tech, B-5030 Gembloux, Belgium
3.Minist Agr, Jiangxi Inst Red Soil, Sci Observat & Expt Stn Arable Land Conservat Jia, Minist Agr, Nanchang 331717, Jiangxi, Peoples R China
4.Rodale Inst, Harrisburg, PA 19530 USA
5.Henan Univ Sci & Technol, Coll Agr, Luoyang 471003, Peoples R China
关键词: Long-term fertilization; Organic carbon; Physical particle-sized fractionation; Soil aggregation; Total nitrogen
期刊名称:JOURNAL OF SOILS AND SEDIMENTS ( 影响因子:3.308; 五年影响因子:3.586 )
ISSN: 1439-0108
年卷期: 2020 年 20 卷 4 期
页码:
收录情况: SCI
摘要: Purpose Understanding the underlying mechanism of soil carbon (C) and nitrogen (N) accumulation is of great significance for soil C sequestration and climate change mitigation, as well as soil fertility improvement. The objective of this study was to evaluate the response of C and N accumulation in aggregates and fine soil particles to long-term mineral fertilizer and manure application. Materials and methods Five treatments from a long-term experiment with double maize cropping were examined in this study, i.e., (1) no fertilizer (control); (2) mineral nitrogen, phosphorus, and potassium application (NPK); (3) doubled application rate of the NPK (2NPK); (4) pig manure alone (M); and (5) mineral NPK fertilizers and manure combination (NPKM). By using physical particle-sized fractionation, we analyzed soil organic carbon (OC) and total nitrogen (N), and delta C-13 of OC in bulk soil and aggregates (53-2000 mu m) and, coarse silt-sized fraction (5-53 mu m), fine silt-sized fraction (2-5 mu m), and clay-sized fraction (< 2 mu m) under those five treatments. Results and discussion Fertilizer application for 24 years, particularly M and NPKM treatments, significantly increased the concentration and proportion of OC and total N associated with aggregates and clay-sized fraction as compared with control. Manure application significantly increased the proportion of OC by 6.6-7.8 points in aggregates, whereas it was by 22.6-25.0 points in clay-sized fraction. Clay-sized fraction-associated C and N showed a non-linear response to C and N accumulation in bulk soil, contributing approximately 47% and 69% to soil OC and total N, respectively. Moreover, the mass proportion of aggregates and the mass ratio of aggregates to fine soil particles increased significantly with C accumulation in fine silt-sized and clay-sized fraction. Conclusions Organic carbon and total nitrogen accumulation in soil clay-sized particles play important role in soil C and N sequestration in red soil. Our results also suggested that C accumulation in fine soil particles might benefit soil aggregation in intensive cropping system of South China.
- 相关文献
作者其他论文 更多>>
-
Combined application of chemical and organic fertilizers enhances soil organic carbon sequestration and crop productivity by improving carbon stability and management index in a rice-rice cropping system
作者:Xu, Hu;Yang, Xueyun;Xu, Hu;Mustafa, Adnan;Sun, Nan;Xu, Minggang;Mustafa, Adnan;Saeed, Qudsia;Jiang, Guiying;Liu, Kailou;Kucerik, Jiri;Xu, Minggang
关键词:Long-term fertilization; Double rice cropping system; Crop yield; OC sequestration and stability; Carbon management index
-
Global Land Use Change Impacts on Soil Nitrogen Availability and Environmental Losses
作者:Wang, Jing;Uwiragiye, Yves;Cao, Miaomiao;Chen, Meiqi;Fallah, Nyumah;Cheng, Yi;Cai, Zucong;Uwiragiye, Yves;Huang, Yuanyuan .;Huang, Yuanyuan .;Huang, Yuanyuan .;Cheng, Yi;Cheng, Yi;Cheng, Yi;Xu, Minggang;Xu, Minggang;Chang, Scott X.;Mueller, Christoph;Mueller, Christoph;Mueller, Christoph;Cheng, Yi;Cai, Zucong;Mueller, Christoph
关键词:nitrogen supply; land use change and nitrogen loss
-
Long-term oyster shell powder applications increase crop yields and control soil acidity and cadmium in red soil drylands
作者:Li, Hao;Wu, Yan;Liu, Kailou;Huang, Shangshu;Li, Jiwen;Han, Tianfu
关键词:oyster shell powder; red soil drylands; soil acidification; cadmium; peanut
-
Enhancement of soil phosphorus mineralization and phosphorus availability by labile carbon in organic amendments through boosting copiotrophic phosphatase-producing bacteria
作者:Jiang, Yunbin;Kuang, Dexu;Han, Cheng;Deng, Huan;Zhong, Wenhui;Li, Wei;Jiang, Yunbin;Han, Cheng;Deng, Huan;Zhong, Wenhui;Liu, Kailou;Huang, Shangshu;Deng, Huan
关键词:Legacy P; Plant-available P; Functional microbial community; C-13 NMR; Upland Ultisol
-
Predominant effects of soil organic carbon quality on phosphatase activity in upland Ultisols under long-term fertilizations
作者:Jiang, Yunbin;Kuang, Dexu;Han, Cheng;Zhong, Wenhui;Li, Wei;Jiang, Yunbin;Han, Cheng;Deng, Huan;Zhong, Wenhui;Liu, Kailou;Huang, Shangshu;Deng, Huan
关键词:Soil phosphorus availability; Phosphatase activity; Phosphorus-mineralizing bacteria; Microbial community; Cropland soil
-
Photosynthesis and senescence gene expression drive yield improvements in early season rice under long-term method of fertilization
作者:Hu, Zhihua;Wu, Jianfu;Hu, Zhihua;Liu, Kailou;Xu, Xiaolin;Hu, Dandan;Song, Huijie;Wu, Yan
关键词:Long-term method of fertilization; Early-season rice; Dry matter accumulation; SPAD; Differentially expressed genes (DEGs)
-
Long-term manure application enhances carbon use efficiency in soil aggregates by regulating microbial communities in cropland
作者:Sun, Xiaodong;Zhang, Chenyang;Cai, Andong;Sun, Xiaodong;Zhang, Chenyang;Xu, Minggang;Liu, Kailou
关键词:Microbial carbon use efficiency; Fertilization; Soil aggregates; Microbial diversity; Microbial networks; Substrate quality



