Climatic Warming Increases Winter Wheat Yield but Reduces Grain Nitrogen Concentration in East China
文献类型: 外文期刊
作者: Tian, Yunlu 1 ; Zheng, Chengyan 2 ; Chen, Jin 3 ; Chen, Changqing 1 ; Deng, Aixing 2 ; Song, Zhenwei 2 ; Zhang, Baomin 1 ;
作者机构: 1.Nanjing Agr Univ, Inst Appl Ecol, Nanjing, Jiangsu, Peoples R China
2.Chinese Acad Agr Sci, Inst Crop Sci, Key Lab Crop Physiol & Ecol, Minist Agr, Beijing 100193, Peoples R China
3.Minist Agr, Soil & Fertilizer & Resources & Environm Inst, Jiangxi Acad Agr Sci, Key Lab Crop Ecophysiol & Farming Syst Middle & L, Nanchang, Peoples R China
期刊名称:PLOS ONE ( 影响因子:3.24; 五年影响因子:3.788 )
ISSN: 1932-6203
年卷期: 2014 年 9 卷 4 期
页码:
收录情况: SCI
摘要: Climatic warming is often predicted to reduce wheat yield and grain quality in China. However, direct evidence is still lacking. We conducted a three-year experiment with a Free Air Temperature Increase (FATI) facility to examine the responses of winter wheat growth and plant N accumulation to a moderate temperature increase of 1.5 degrees C predicted to prevail by 2050 in East China. Three warming treatments (AW: all-day warming; DW: daytime warming; NW: nighttime warming) were applied for an entire growth period. Consistent warming effects on wheat plant were recorded across the experimental years. An increase of ca. 1.5 degrees C in daily, daytime and nighttime mean temperatures shortened the length of pre-anthesis period averagely by 12.7, 8.3 and 10.7 d (P<0.05), respectively, but had no significant impact on the length of the post-anthesis period. Warming did not significantly alter the aboveground biomass production, but the grain yield was 16.3, 18.1 and 19.6% (P<0.05) higher in the AW, DW and NW plots than the non-warmed plot, respectively. Warming also significantly increased plant N uptake and total biomass N accumulation. However, warming significantly reduced grain N concentrations while increased N concentrations in the leaves and stems. Together, our results demonstrate differential impacts of warming on the depositions of grain starch and protein, highlighting the needs to further understand the mechanisms that underlie warming impacts on plant C and N metabolism in wheat.
- 相关文献
作者其他论文 更多>>
-
Integrated Effects of Straw Incorporation and N Application on Rice Yield and Greenhouse Gas Emissions in Three Rice-Based Cropping Systems
作者:Bankole, Oluwaseyi Oyewale;Danso, Frederick;Zhang, Nan;Zhang, Jun;Zhang, Xin;Li, Gexing;Raheem, Abdulkareem;Deng, Aixing;Zheng, Chengyan;Song, Zhenwei;Zhang, Weijian;Zhang, Nan;Zhang, Kun;Dong, Wenjun;Lu, Changying;Li, Gexing;Raheem, Abdulkareem
关键词:straw; N fertilizer; rice yield; CH4 emissions; yield-scaled emissions; mcrA; cropping systems
-
Rice Yield and Nitrogen Use Efficiency: Different Responses to Soil Organic Matter between Early and Late Rice
作者:Wang, Yong;Tang, Gang;Fu, Wentao;Huang, Shan;Sun, Yanni;Chen, Jin;Chen, Jin
关键词:Soil Organic Carbon; Double rice; N Uptake; N Recovery Efficiency; N-15 Tracer
-
A novel OsGST gene encoding 9glutathione reductase negatively regulates cadmium accumulation in rice
作者:Guo, Rui;Li, Su;Gao, Yong Qiang;He, Jia Tong;Wang, Hao Yu;Shen, Ren Fang;Zhu, Xiao Fang;Guo, Rui;Huang, Jiu;Chen, Jin;Chen, Jin
关键词:Antioxidant; Cd; OsGST; Rice; ROS
-
Liming reduces nitrogen uptake from chemical fertilizer but increases that from straw in a double rice cropping system
作者:Liao, Ping;Liao, Ping;van Groenigen, Kees Jan;Liu, Lei;Sun, Yanni;Huang, Shan;Zeng, Yongjun;Chen, Jin;Chen, Jin
关键词:Yield; N recovery rate; N losses; Soil acidification; 15 N tracing
-
Lime Application Reduces Methane Emissions Induced by Pig Manure Substitution from a Double-Cropped Rice Field
作者:Liu, Jinsong;He, Yuxuan;Huang, Shan;Sun, Yanni;Chen, Jin;Chen, Jin
关键词:soil acidification; organic amendment; methane; nitrous oxide; rice yield
-
Optimizing the Nitrogen Fertilizer Management to Maximize the Benefit of Straw Returning on Early Rice Yield by Modulating Soil N Availability
作者:Hu, Juan;Guan, Xianjiao;Liang, Xihuan;Chen, Xianmao;Xie, Jiang;Deng, Guoqiang;Li, Xiuxiu;Qiu, Caifei;Qian, Yinfei;Peng, Chunrui;Chen, Jin;Hu, Juan;Guan, Xianjiao;Liang, Xihuan;Chen, Xianmao;Xie, Jiang;Deng, Guoqiang;Li, Xiuxiu;Qiu, Caifei;Qian, Yinfei;Peng, Chunrui;Chen, Jin;Wang, Binqiang;Zhang, Kun;He, Xiaolin;Chen, Ji
关键词:Oryza sativa L.; nutrient cycling; nutrients release; carbon nitrogen ratio; straw returning; root growth; yield
-
Plough Tillage Maintains High Rice Yield and Lowers Greenhouse Gas Emissions under Straw Incorporation in Three Rice-Based Cropping Systems
作者:Danso, Frederick;Bankole, Oluwaseyi Oyewale;Zhang, Nan;Shang, Ziyin;Deng, Aixing;Song, Zhenwei;Zheng, Chengyan;Zhang, Jun;Zhang, Weijian;Dong, Wenjun;Zhang, Kun;Lu, Changying;Li, Gexing
关键词:rice; soil tillage; crop straw; greenhouse gas; methane