您好,欢迎访问江西省农业科学院 机构知识库!

Different traits from the paddy soil and upland soil regulate bacterial community and molecular composition under long-term fertilization regimes

文献类型: 外文期刊

作者: Li, Dandan 1 ; Zhao, Bingzi 1 ; Zhang, Jiabao 1 ; Liu, Kailou 2 ; Huang, Qinghai 2 ;

作者机构: 1.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Nanjing 210008, Peoples R China

2.Ctr Red Soil Improvement, Jiangxi Inst Red Soil, Natl Engn & Technol Res, Nanchang 331717, Jiangxi, Peoples R China

关键词: Paddy soil; Upland soil; Long-term fertilization; Bacterial community composition; Molecular composition

期刊名称:APPLIED SOIL ECOLOGY ( 影响因子:4.046; 五年影响因子:4.884 )

ISSN: 0929-1393

年卷期: 2021 年 165 卷

页码:

收录情况: SCI

摘要: Fertilization-induced changes in soil properties from the paddy soil and upland soil may directly regulate bacterial community composition, which usually coincide with shifts in molecular composition of soil organic carbon (SOC) in the upland soil. However, systematical comparisons lack on how regulators vary with cropping systems under the same weather conditions and soil parent materials. Here, we simultaneously investigated the changes of soil physicochemical parameters and shifts in the bacterial community and SOC molecular composition in two adjacent rice and maize fields that have received five fertilization regimes for more than 30 years. The separation of the bacterial community composition among the treatments from the paddy soil was mainly determined by soil nitrate-N, and that from the upland soil was mainly determined by soil available P (AP) and pH. The SOC molecular composition from the paddy soil was separated by the treatments with N application or not, with those treatments with N application being enriched with CCH3 and aromatic C-C, and those without N application being enriched with aromatic C-H. These changed C functional groups showed close association with amorphous Fe2O3. For the upland soil, the SOC molecular composition was separated by the treatments with P application or not, with those treatments with P application being enriched with OCH, and those without P application being enriched with CH/CH2. These changed C functional groups had close association with AP and total P. Our results indicated inconsistent separation patterns and regulators of the bacterial community and SOC molecular composition among the treatments of the paddy soil and upland soil, and suggested that the relatively dominant role of the fertilization-induced changes in soil properties or other soil microbes that controlled the SOC molecular composition over the bacteria measured in the present study.

  • 相关文献
作者其他论文 更多>>