您好,欢迎访问江西省农业科学院 机构知识库!

Comparison of grain traits and genetic diversity between Chinese and Uruguayan soybeans (Glycine max L.)

文献类型: 外文期刊

作者: Sun, Chang 1 ; Zhang, Zhihao 2 ; Liu, Meiling 1 ; Ceretta, Sergio 4 ; Zhang, Shengrui 5 ; Guo, Bingfu 6 ; Li, Yinghui 2 ; Liu, Zhangxiong 2 ; Gu, Yongzhe 2 ; Ao, Xue 1 ; Qiu, Lijuan 2 ;

作者机构: 1.Shenyang Agr Univ, Coll Agron, Shenyang, Peoples R China

2.Chinese Acad Agr Sci, Key Lab Crop Gene Resource & Germplasm Enhancement, Natl Key Facil Crop Gene Resources & Genet mprovem, Inst Crop Sci,State Key Lab Crop Gene Resources &, Beijing, Peoples R China

3.Northeast Agr Univ, Key Lab Soybean Biol Chinese, Key Lab Soybean Biol & Breeding Genet, Minist Educ,Chinese Agr Minist, Harbin, Peoples R China

4.Natl Agr Res Inst INIA, Soybean Breeding Program, Colonia, Uruguay

5.Chinese Acad Agr Sci, Inst Crop Sci, Natl Engn Res Ctr Crop Mol Breeding, Key Lab Soybean Biol Beijing,Minist Agr & Rural Af, Beijing, Peoples R China

6.Jiangxi Acad Agr Sci, Inst Crops, Natl Ctr Oilcrops Improvement, Jiangxi Prov Key Lab Genet Improvement Oilcrops,Na, Nanchang, Peoples R China

关键词: soybean; Uruguay; oil content; genetic structure; genetic diversity

期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.1; 五年影响因子:5.3 )

ISSN: 1664-462X

年卷期: 2024 年 15 卷

页码:

收录情况: SCI

摘要: Soybeans (Glycine max L.), originating in China, were introduced to South America in the late 19th century after passing through North America. South America is now a major soybean-producing region, accounting for approximately 40% of the global soybean production. Crops like soybeans gradually adapt to the local climate and human-selected conditions, resulting in beneficial variations during cultivation in different regions. Comparing the phenotypic and genetic variations in soybeans across different regions is crucial to determining the variations that may enhance soybean productivity. This study identified seed-related traits and conducted a genetic diversity analysis using 46 breeding soybean varieties from China and Uruguay. Compared to the Chinese soybean germplasm, the Uruguayan equivalent had a lower 100-grain weight, higher oil content, lower protein content, and higher soluble sugar content. Using ZDX1 gene chips, genetic typing was performed on the 46 breeding varieties. Cluster analysis based on SNP sites revealed significant differences in the genetic basis of Sino-Uruguayan soybean germplasm. Selection analysis, including nucleotide polymorphism (pi) and fixation indexes (Fst), identified several genomic regions under selection between Sino-Uruguayan soybean germplasm. The selected intervals significantly enriched gene ontology (GO) terms related to protein metabolism. Additionally, differentiation occurred in genes associated with the oil content, seed weight, and cyst nematodes between Sino-Uruguayan soybean germplasm, such as GmbZIP123 and GmSSS1. These findings highlight the differences in seed-related phenotypes between Sino-Uruguay soybean germplasm and provide genomic-level insights into the mechanisms behind phenotypic differences, offering valuable references for understanding soybean evolution and molecular breeding.

  • 相关文献
作者其他论文 更多>>