您好,欢迎访问江西省农业科学院 机构知识库!

Genetic Analysis of Novel Fertility Restoration Genes (qRf3 and qRf6) in Dongxiang Wild Rice Using GradedPool-Seq Mapping and QTL-Seq Correlation Analysis

文献类型: 外文期刊

作者: Cai, Wenshan 1 ; Li, Wanlin 1 ; Duan, Liuying 1 ; Chen, Yaling 1 ; Zhang, Fantao 1 ; Hu, Biaolin 2 ; Xie, Jiankun 1 ;

作者机构: 1.Jiangxi Normal Univ, Lab Plant Genet Improvement & Biotechnol, Nanchang 330200, Peoples R China

2.Jiangxi Acad Agr Sci, Rice Res Inst, Natl Engn Lab Rice Nanchang, Nanchang 330200, Peoples R China

关键词: fertility restoration; Dongxiang wild rice; QTL; GradedPool-Seq

期刊名称:INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES ( 影响因子:5.6; 五年影响因子:6.2 )

ISSN: 1661-6596

年卷期: 2023 年 24 卷 19 期

页码:

收录情况: SCI

摘要: The improvement of grain yield, quality, and resistance can be achieved through the utilization of heterosis. The combination of cytoplasmic male sterility (CMS) and fertility restoration (Rf) gene(s) greatly facilitates the commercial development of three-line hybrid rice based on heterosis. The basis for investigating the relationship between CMS and Rf genes lies in the rapid localization of wild rice fertility restoration genes. A set of the BC4F5 population derived from interspecific crosses between Xieqingzao B (XB) and the BC1F9 XB//Dongxiang wild rice (DWR)/XB line L5339 was used to detect quantitative trait loci (QTL) for fertility restoration. The population was then crossed with two male sterile lines, Zhong9A (Z9A) and DongB11A (DB11A), in order to generate a testcrossing population for investigating spikelet fertility. Based on the linkage mapping, seven QTLs were detected on chromosomes 1, 3, 5, 6, 8, and 10, explaining 2.76 to 12.46% of the phenotypic variation. Of them, two novel fertility restoration QTLs, qRf3 and qRf6, can restore fertility of the CMS-DWR line DB11A by 16.56% and 15.12%, respectively. By employing joint QTL-seq and GradedPool-Seq methods, two novel Rf QTLs for DB11A, qRf3 and qRf6, were identified at the physical locations of 10,900,001-11,700,000 bp and 28,016,785-31,247,556 bp, respectively. These findings are useful for exploring the natural variations of Rf genes in rice. Therefore, rice's new genetic resources for the selection and breeding of rice restorer lines provide promising candidates for QTL fine localization and clarification.

  • 相关文献
作者其他论文 更多>>