Mitigating saturation effects in rice nitrogen estimation using Dualex measurements and machine learning
文献类型: 外文期刊
作者: Shi, Peihua 1 ; Wang, Yuan 2 ; Yin, Congfei 1 ; Fan, Kaiqing 1 ; Qian, Yinfei 3 ; Chen, Gui 4 ;
作者机构: 1.Jiangsu Vocat Coll Agr & Forestry, Dept Agron & Hort, Jurong, Peoples R China
2.Chinese Acad Sci, Inst Soil Sci, State Key Lab Soil & Sustainable Agr, Changshu Natl Agroecosyst Observat & Res Stn, Nanjing, Peoples R China
3.Jiangxi Acad Agr Sci, Inst Soil & Fertilizer & Resources & Environm, Nanchang, Peoples R China
4.Jiaxing Acad Agr Sci, Inst Biotechnol, Jiaxing, Peoples R China
关键词: rice nitrogen estimation; Dualex measurements; saturation effect; incremental analysis; machine learning; nitrogen balance index; SHAP analysis
期刊名称:FRONTIERS IN PLANT SCIENCE ( 影响因子:4.8; 五年影响因子:5.7 )
ISSN: 1664-462X
年卷期: 2024 年 15 卷
页码:
收录情况: SCI
摘要: Nitrogen is essential for rice growth and yield formation, but traditional methods for assessing nitrogen status are often labor-intensive and unreliable at high nitrogen levels due to saturation effects. This study evaluates the effectiveness of flavonoid content (Flav) and the Nitrogen Balance Index (NBI), measured using a Dualex sensor and combined with machine learning models, for precise nitrogen status estimation in rice. Field experiments involving 15 rice varieties under varying nitrogen application levels collected Dualex measurements of chlorophyll (Chl), Flav, and NBI from the top five leaves at key growth stages. Incremental analysis was performed to quantify saturation effects, revealing that chlorophyll measurements saturated at high nitrogen levels, limiting their reliability. In contrast, Flav and NBI remained sensitive across all nitrogen levels, accurately reflecting nitrogen status. Machine learning models, particularly random forest and extreme gradient boosting, achieved high prediction accuracy for leaf and plant nitrogen concentrations (R-2 > 0.82), with SHAP analysis identifying NBI and Flav from the top two leaves as the most influential predictors. By combining Flav and NBI measurements with machine learning, this approach effectively overcomes chlorophyll-based saturation limitations, enabling precise nitrogen estimation across diverse conditions and offering practical solutions for improved nitrogen management in rice cultivation.
- 相关文献
作者其他论文 更多>>
-
pH threshold in controlling dominant nitrification pathway in acidic soils
作者:Cao, Miaomiao;Li, Yong;Zhang, Yuxuan;Uwiragiye, Yves;Jing, Hang;Cheng, Yi;Cai, Zucong;Yu, Debang;Wang, Jing;Tang, Quan;Elrys, Ahmed S.;Cheng, Yi;Cheng, Yi;Xu, Minggang;Xu, Minggang;Mueller, Christoph;Mueller, Christoph;Cheng, Yi;Mueller, Christoph;Qian, Yinfei;Cheng, Yi
关键词:Soil pH; Nitrogen addition; Autotrophic nitrification; Heterotrophic nitrification
-
The duration of intensive vegetable cultivation regulates the fates of accumulated nitrate under reductive soil disinfestation
作者:Zhang, Huimin;Fallah, Nyumah;Uwiragiye, Yves;Cheng, Yi;Zhang, Maoheng;Cai, Zucong;Wang, Jing;Uwiragiye, Yves;Qian, Yinfei;Cheng, Yi;Cheng, Yi;Cheng, Yi;Cheng, Yi;Mueller, Christoph;Mueller, Christoph;Mueller, Christoph;Mueller, Christoph
关键词:Intensive vegetable cultivation; Reductive soil disinfestation; NO3--N fates; NO3--N removal; NO3--N leaching; Denitrification
-
Optimizing the Nitrogen Fertilizer Management to Maximize the Benefit of Straw Returning on Early Rice Yield by Modulating Soil N Availability
作者:Hu, Juan;Guan, Xianjiao;Liang, Xihuan;Chen, Xianmao;Xie, Jiang;Deng, Guoqiang;Li, Xiuxiu;Qiu, Caifei;Qian, Yinfei;Peng, Chunrui;Chen, Jin;Hu, Juan;Guan, Xianjiao;Liang, Xihuan;Chen, Xianmao;Xie, Jiang;Deng, Guoqiang;Li, Xiuxiu;Qiu, Caifei;Qian, Yinfei;Peng, Chunrui;Chen, Jin;Wang, Binqiang;Zhang, Kun;He, Xiaolin;Chen, Ji
关键词:Oryza sativa L.; nutrient cycling; nutrients release; carbon nitrogen ratio; straw returning; root growth; yield
-
Enhancing Nitrogen Nutrition Index estimation in rice using multi-leaf SPAD values and machine learning approaches
作者:Wang, Yuan;Shi, Weiming;Xiang, Haitao;Shi, Peihua;Qian, Yinfei;Xie, Jiang;Guan, Xianjiao;Chen, Gui
关键词:rice nitrogen diagnosis; multi-leaf SPAD values; machine learning; leaf nitrogen concentration; nitrogen nutrition index; statistical metrics
-
Global Ecosystem Nitrogen Cycling Reciprocates Between Land-Use Conversion and Its Reversal
作者:Uwiragiye, Yves;Wu, Liangping;Zhou, Jiake;Zhang, Yanhui;Chen, Meiqi;Jing, Hang;Cheng, Yi;Cai, Zucong;Uwiragiye, Yves;Wang, Jing;Huang, Yuanyuan;Huang, Yuanyuan;Qian, Yinfei;Elrys, Ahmed S.;Elrys, Ahmed S.;Cheng, Yi;Cheng, Yi;Cheng, Yi;Muller, Christoph;Xu, Minggang;Xu, Minggang;Chang, Scott X.;Muller, Christoph;Muller, Christoph;Muller, Christoph
关键词:conservative nitrogen cycle; ecosystem nitrogen cycling; land-use change; leaky nitrogen cycle; soil gross nitrogen transformation rates
-
Effects of Different Concentrations of Micro-Nano Bubbles on Grain Yield and Nitrogen Absorption and Utilization of Double Cropping Rice in South China
作者:Qian, Yinfei;Guan, Xianjiao;Shao, Caihong;Qiu, Caifei;Chen, Xianmao;Chen, Jin;Peng, Chunrui
关键词:micro-nano bubbles; double cropping rice; root characteristics; grain yield; nitrogen absorption and utilization
-
Reducing nitrogen application with dense planting increases nitrogen use efficiency by maintaining root growth in a double-rice cropping system
作者:Chen, Jin;Xie, Jiang;Deng, Guoqiang;Tu, Tianhua;Guan, Xianjiao;Chen, Xianmao;Qiu, Caifei;Qian, Yinfei;Shao, Caihong;Peng, Chunrui;Zhu, Xiangcheng;Yang, Zhen;Chen, Jin;Huang, Shan;Xu, Minggang
关键词:Rice; Planting density; N recovery efficiency; Root morphology; South China



