您好,欢迎访问江西省农业科学院 机构知识库!

Differential proteomic analysis of rice seedlings reveals the advantage of dry-raising nursery practices

文献类型: 外文期刊

作者: Zhang, Zhixing 1 ; Huang, Fenglian 1 ; Shao, CaiHong 3 ; Chen, Hongfei 1 ; Lin, Wenxiong 1 ;

作者机构: 1.Fujian Agr & Forestry Univ, Coll Life Sci, Fujian Prov Key Lab Agroecol Proc & Safety Monito, Fuzhou 350002, Fujian, Peoples R China

2.Fujian Prov Univ, Fujian Agr & Forestry Univ, Key Lab Crop Ecol & Mol Physiol, Fuzhou 35002, Fujian, Peoples R China

3.Jiangxi Acad Agr

关键词: Rice;Seedling;Dry-raising nursery;Quantitative proteomics

期刊名称:PLANT GROWTH REGULATION ( 影响因子:3.412; 五年影响因子:3.691 )

ISSN: 0167-6903

年卷期: 2018 年 84 卷 2 期

页码:

收录情况: SCI

摘要: Dry-raising rice seedlings in nurseries is a key technique in high-yield rice cultivation. The present study of morphological and physiological indexes showed dry-raised seedlings (DRS) had a shorter stature, more developed root systems, and significantly higher soluble sugar, starch, and N content than moist-raised seedlings (MRS), resulting in significantly increased grain yield. Compared to the MRS techniques, the dry-raised measures induced higher levels of abscisic acid (ABA), gibberellins (GA3), and indole-3-acetic acid (IAA) in leaves and roots of seedlings. We then utilized tandem mass tags (TMT) quantitative proteomics technology to analyze the mechanism by which rice exposed to the appropriate drought stress (dry-raised measures) during the seedling stage develop differently. Through mass spectrometry, we identified 281 significantly expressed proteins in roots and 268 in leaves. The differentially expressed proteins were then divided into 23 categories based on MapMan ontology. In addition, the hormonal-related protein expression patterns of DRS were confirmed with RT-PCR at the transcript level. On the basis of these findings, we proposed that appropriate drought stress during the rice seedling stage can change the expression of key proteins involved in nitrogen uptake and translocation, hormone synthesis, photosynthesis, and CHO metabolic processes, thus regulating rice seedling growth. In this process, the differentially expressed key proteins, such as the 14-3-3 protein, GTP-binding protein, and calcium, play important roles in transduction of signals regarding soil drought, and the upregulated heat shock protein, glutathione S-transferases, and peroxidases function in enhancing the stress tolerance of the seedlings under dry-raising nursery conditions. This study established the high yielding mechanism of dry-raised cultivates methods during seedling stage at the protein expression level.

  • 相关文献

[1]Study on Flowering Habits of GMS Rice Lian 9S. Zou Guoxing,Yin Jianhua,Liu Yibai,Peng Zhiqing,Yang Ping,Huang Yongping,Chen Chunlian,Xu Lanxiang,Jiangxi Association for Science & Technology(CN);. 2005

[2]Nitrogen management to reduce yield-scaled global warming potential in rice. Liang, X. Q.,Ye, Y. S.,Ji, Y. J.,Tian, G. M.,Li, H.,Wang, S. X.,van Kessel, C.,Linquist, B. A.. 2013

[3]Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. Bao, JS,Kong, XL,Xie, JK,Xu, LJ. 2004

[4]Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Chen, Mingliang,Luo, Ju,Shao, Gaoneng,Wei, Xiangjin,Tang, Shaoqing,Sheng, Zhonghua,Song, Jian,Hu, Peisong,Chen, Mingliang.

[5]Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Sun, Yanni,Huang, Shan,Yu, Xichu,Zhang, Weijian.

[6]Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties. Shu Chang,Wu Jing-hao,Shi Gao-ling,Lou Lai-qing,Deng Jun-xia,Cai Qing-sheng,Wan Jian-lin. 2015

[7]Analysis of genotypic and environmental effects on rice starch. 2. Thermal and retrogradation properties. Xu, LJ,Xie, JK,Kong, XL,Bao, JS. 2004

[8]Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. Kong, XL,Xie, JK,Wu, XL,Huang, YJ,Bao, JS.

[9]Mapping quantitative trait loci associated with starch paste viscosity in rice (Oryza sativa L.) under different environmental conditions. Yao, Xiaoyun,Wang, Jiayu,Liu, Jin,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Yao, Xiaoyun,Wang, Jiayu,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Liu, Jin,Ren, Chunyuan.

[10]Characterization and fine mapping of a female fertility associated gene Ff1(t) in rice. Zhao, Lei,Yan, Song,Huang, Renliang,Zhu, Shan,Xiong, Hongliang,Shen, Xianhua,Peng, Zhiqin,Huang, Yingjin.

[11]Genetic diversity and population structure in a rice drought stress panel. Tabanao, Dindo A.,Pocsedio, Arnel E.,Yabes, Jonalyn C.,Nino, Marjohn C.,Millas, Reneth A.,Sevilla, Neah Rosandra L.,Xiao Yulong,Yu, Jianming.

[12]Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jia, Melissa,Jackson, Aaron,McClung, Anna,Hu, Biaolin.

[13]A Simple and Accurate Resistance Identification Method of Rice to Neck Blast Disease InVitro. Lan, Bo,Yang, Ying-Qing,Chen, Hong-Fan,Li, Xiang-Min,Jiang, Jun-Xi.

[14]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[15]Genotyping the Heading Date of Male-Sterile Rice Line II-32A. Xu, JF,Jiang, L,Wei, XJ,Zhang, WW,Liu, SJ,Chen, LM,Wang, CM,Luo, LG,Wan, JM.

作者其他论文 更多>>