您好,欢迎访问江西省农业科学院 机构知识库!

A Simple and Accurate Resistance Identification Method of Rice to Neck Blast Disease InVitro

文献类型: 外文期刊

作者: Lan, Bo 1 ; Yang, Ying-Qing 1 ; Chen, Hong-Fan 1 ; Jiang, Jun-Xi 2 ; Li, Xiang-Min 1 ;

作者机构: 1.Jiangxi Acad Agr Sci, Inst Plant Protect, Nanchang 330200, Peoples R China

2.Jiangxi Agr Univ, Coll Agr, Nanchang 330045, Peoples R China

关键词: dropping spore suspension on panicle segment invitro;neck blast;resistance identification;rice

期刊名称:JOURNAL OF PHYTOPATHOLOGY ( 影响因子:1.789; 五年影响因子:1.574 )

ISSN:

年卷期:

页码:

收录情况: SCI

摘要: Twelve rice cultivars with differential resistance to rice blast disease (Magnaporthe oryzae (Hebert) Barr), including Tetep (R), IR36 (MR) and Lijiangxituanhegu (HS), and nine locally planted rice cultivars in Jiangxi helped establish an identification method for rice resistance to neck blast. We describe a new technique of dropping a spore suspension on the panicle segment invitro (DSSPS). This technique involved rice panicles that were initially 0.5-2cm in length and then cut into a 7- to 8-cm segment (i.e. an upper node of 1cm and a lower node of 6-7cm). The segment was placed into a Petri dish with a stack of sterile water saturated filter paper. The suspension (4l 1x10(5)spores/ml) was placed at each of three locations on the segment (with an approximate interval of 3cm). Disease severity was then assessed according to a 0-9 scale after incubating for 9days with a 12h/12h (light/day cycle) at 28 degrees C. Choosing a suitable developmental stage of the rice panicle and blast strains was a key to evaluate resistance accurately. DSSPS is a simple and accurate method of identifying rice resistance to neck blast as compared to injecting the spore suspension into the rice panicle invivo and resistance identification in natural nurseries. It is stressed that at least 20 single-spore strains are needed to accurately assess rice resistance to neck blast. We tested 1005 rice cultivars for neck blast resistance in Jiangxi province during 2010-2015, which showed an accuracy of 85.77% by DSSPS as compared with natural nursery data.

  • 相关文献

[1]Genotypic and phenotypic characterization of genetic differentiation and diversity in the USDA rice mini-core collection. Jia, Limeng,Wu, Dianxing,Li, Xiaobai,Li, Xiaobai,Agrama, Hesham,Jia, Limeng,Moldenhauer, Karen,Li, Xiaobai,Yan, Wengui,Jia, Limeng,Jia, Melissa,Jackson, Aaron,McClung, Anna,Hu, Biaolin.

[2]Fine mapping of a major QTL for flag leaf width in rice, qFLW4, which might be caused by alternative splicing of NAL1. Chen, Mingliang,Luo, Ju,Shao, Gaoneng,Wei, Xiangjin,Tang, Shaoqing,Sheng, Zhonghua,Song, Jian,Hu, Peisong,Chen, Mingliang.

[3]Mapping quantitative trait loci associated with starch paste viscosity in rice (Oryza sativa L.) under different environmental conditions. Yao, Xiaoyun,Wang, Jiayu,Liu, Jin,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Yao, Xiaoyun,Wang, Jiayu,Zhang, Jia,Ma, Dianrong,Xu, Hai,Xu, Zhengjin,Liu, Jin,Ren, Chunyuan.

[4]Genetic diversity and population structure in a rice drought stress panel. Tabanao, Dindo A.,Pocsedio, Arnel E.,Yabes, Jonalyn C.,Nino, Marjohn C.,Millas, Reneth A.,Sevilla, Neah Rosandra L.,Xiao Yulong,Yu, Jianming.

[5]Short and erect rice (ser) mutant from Khao Dawk Mali 105' improves plant architecture. Yan, Wengui,Jia, Limeng,Jackson, Aaron,Pan, Xuhao,Hu, Biaolin,Zhang, Qijun,Jia, Limeng,Jia, Limeng,Pan, Xuhao,Yan, Zongbu,Deren, Christopher,Pan, Xuhao,Huang, Bihu.

[6]Differences in fertilization impacts on organic carbon content and stability in a paddy and an upland soil in subtropical China. Sun, Yanni,Huang, Shan,Yu, Xichu,Zhang, Weijian.

[7]Characterization and fine mapping of a female fertility associated gene Ff1(t) in rice. Zhao, Lei,Yan, Song,Huang, Renliang,Zhu, Shan,Xiong, Hongliang,Shen, Xianhua,Peng, Zhiqin,Huang, Yingjin.

[8]Genotyping the Heading Date of Male-Sterile Rice Line II-32A. Xu, JF,Jiang, L,Wei, XJ,Zhang, WW,Liu, SJ,Chen, LM,Wang, CM,Luo, LG,Wan, JM.

[9]Rapid prediction of acid detergent fiber, neutral detergent fiber, and acid detergent lignin of rice materials by near-infrared spectroscopy. Kong, XL,Xie, JK,Wu, XL,Huang, YJ,Bao, JS.

[10]Analysis of genotypic and environmental effects on rice starch. 1. Apparent amylose content, pasting viscosity, and gel texture. Bao, JS,Kong, XL,Xie, JK,Xu, LJ. 2004

[11]Differential proteomic analysis of rice seedlings reveals the advantage of dry-raising nursery practices. Zhang, Zhixing,Huang, Fenglian,Chen, Hongfei,Lin, Wenxiong,Zhang, Zhixing,Huang, Fenglian,Chen, Hongfei,Lin, Wenxiong,Shao, CaiHong. 2018

[12]Analysis of genotypic and environmental effects on rice starch. 2. Thermal and retrogradation properties. Xu, LJ,Xie, JK,Kong, XL,Bao, JS. 2004

[13]Different Aluminum Tolerance among Indica, Japonica and Hybrid Rice Varieties. Shu Chang,Wu Jing-hao,Shi Gao-ling,Lou Lai-qing,Deng Jun-xia,Cai Qing-sheng,Wan Jian-lin. 2015

[14]Nitrogen management to reduce yield-scaled global warming potential in rice. Liang, X. Q.,Ye, Y. S.,Ji, Y. J.,Tian, G. M.,Li, H.,Wang, S. X.,van Kessel, C.,Linquist, B. A.. 2013

作者其他论文 更多>>